2 2 A ug 2 00 3 BILINEAR EIGENFUNCTION ESTIMATES AND THE NONLINEAR SCHRÖDINGER EQUATION ON SURFACES

نویسندگان

  • N. Burq
  • P. Gérard
  • N. Tzvetkov
چکیده

— We study the cubic non linear Schrödinger equation (NLS) on compact surfaces. On the sphere S 2 and more generally on Zoll surfaces, we prove that, for s > 1/4, NLS is uniformly well-posed in H s , which is sharp on the sphere. The main ingredient in our proof is a sharp bilinear estimate for Laplace spectral projectors on compact surfaces. Résumé. — Onétudie l'´ equation de Schrödinger non linéaire (NLS) sur une surface com-pacte. Sur la sphère S 2 et plus généralement sur toute surface de Zoll, on démontre que pour s > 1/4, NLS est uniformément bien posée dans H s , ce qui est optimal sur la sphère. Le principal ingrédient de notre démonstration est une estimation bilinéaire pour les projecteurs spectraux du laplacien sur une surface compacte.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . A P ] 2 1 A ug 2 00 0 MULTILINEAR WEIGHTED CONVOLUTION OF L 2 FUNCTIONS , AND APPLICATIONS TO NON - LINEAR DISPERSIVE EQUATIONS

The X s,b spaces, as used by Beals, Bourgain, Kenig-Ponce-Vega, Klainerman-Machedon and others, are fundamental tools to study the low-regularity behaviour of non-linear dispersive equations. It is of particular interest to obtain bilinear or multilinear estimates involving these spaces. By Plancherel's theorem and duality, these estimates reduce to estimating a weighted convolution integral in...

متن کامل

Bilinear Strichartz Estimates for Schrödinger Operators in 2 Dimensional Compact Manifolds with Boundary and Cubic Nls

In this paper, we establish bilinear and gradient bilinear Strichartz estimates for Schrödinger operators in 2 dimensional compact manifolds with boundary. Using these estimates, we can infer the local well-posedness of cubic nonlinear Schrödinger equation in H for every s > 2 3 on such manifolds.

متن کامل

m at h . A P ] 2 9 A pr 2 00 0 MULTILINEAR WEIGHTED CONVOLUTION OF L 2 FUNCTIONS , AND APPLICATIONS TO NON - LINEAR DISPERSIVE EQUATIONS

The X s,b spaces, as used by Beals, Bourgain, Kenig-Ponce-Vega, Klainerman-Machedon and others, are fundamental tools to study the low-regularity behaviour of non-linear dispersive equations. It is of particular interest to obtain bilinear or multilinear estimates involving these spaces. By Plancherel's theorem and duality, these estimates reduce to estimating a weighted convolution integral in...

متن کامل

0 M ay 2 00 0 MULTILINEAR WEIGHTED CONVOLUTION OF L 2 FUNCTIONS , AND APPLICATIONS TO NON - LINEAR DISPERSIVE EQUATIONS

The X s,b spaces, as used by Beals, Bourgain, Kenig-Ponce-Vega, Klainerman-Machedon and others, are fundamental tools to study the low-regularity behaviour of non-linear dispersive equations. It is of particular interest to obtain bilinear or multilinear estimates involving these spaces. By Plancherel's theorem and duality, these estimates reduce to estimating a weighted convolution integral in...

متن کامل

4 M ay 2 00 0 MULTILINEAR WEIGHTED CONVOLUTION OF L 2 FUNCTIONS , AND APPLICATIONS TO NON - LINEAR DISPERSIVE EQUATIONS

The X s,b spaces, as used by Beals, Bourgain, Kenig-Ponce-Vega, Klainerman-Machedon and others, are fundamental tools to study the low-regularity behaviour of non-linear dispersive equations. It is of particular interest to obtain bilinear or multilinear estimates involving these spaces. By Plancherel's theorem and duality, these estimates reduce to estimating a weighted convolution integral in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003